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Investigating Some Important 
Characteristics of Soft Hilbert Space 

Indubaran Mandal 

Department of Mathematics, Bidhan Chandra College, Asansol 

Abstract: 
Main aim of this work is to discuss some important characteristics of soft Hilbert 

Space. In this present work we have analysed some important properties like orthogonality, 
orthonormality in soft Hilbert space. We discussed some examples of soft Hilbert space such 

as the soft  𝑙2 space and some inequality results on this space have been given. Moreover, it 
has been demonstrated that each soft Hilbert space contains an orthonormal basis, which can 
be derived using the Gram–Schmidt orthogonalization procedure within a soft inner 
product space. 
AMS Classification: 03E72, 08A72 
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Introduction 
In the year 1999, Molodtsov [16] initiated the theory of soft sets as a new 

mathematical tool for dealing with uncertainties. He has demonstrated numerous 
applications of this theory in addressing practical problems across various fields. 
Research works in soft set theory and its applications in various fields have been 
progressing rapidly since Maji et al. ([13],[14]) introduced several operations on 
soft sets and applied it to decision making problems. In the line of reduction and 
addition of parameters of soft sets some works have been done by Chen [3], Pei 
and Miao [17] , Kong et al. [12] , Zou and Xiao [19]. Aktas and Cagman [1] 
introduced the notion of soft group and discussed various properties. Jun ([11]) 
investigated soft BCK/BCI - algebras and its application in ideal theory. Feng et al. 
[9] worked on soft semirings, soft ideals and idealistic soft semirings. Ali et al. [2] 
and Shabir and Irfan Ali ([2]) studied soft semigroups and soft ideals over a semi 
group which characterize generalized fuzzy ideals and fuzzy ideals with thresholds 
of a semigroup. The idea of soft topological spaces was first given by M. Shabir, M. 
Naz [18] and mappings between soft sets were described by P. Majumdar, S. K. 
Samanta [15]. Feng et al. [10] worked on soft sets combined with fuzzy sets and 
rough sets. 

In ([4],[5]) Das and Samanta have introduced a notion of soft real sets, 
soft real numbers, soft complex sets, soft complex numbers and some of their basic 
properties have been investigated. In ([6],[7]) Das and Samanta introduced the 
concept of `soft metric', `soft linear spaces', `soft norm' on a `soft linear spaces' and 
studied various properties of `soft metric spaces' and `soft normed linear spaces' in 
details. In [8] they have introduced a notion of soft inner product on soft linear 
space and studied some of its properties. 

In this work we have studied some significant characteristic of the soft 
Hilbert space.  Properties like orthogonality, orthonormality in soft Hilbert space 
are investigated. In the second section some preliminary results are mentioned. In 
the third section, notion of orthogonality, orthonormality in soft Hilbert space are 
given and its properties are being investigated. Also we discussed some examples of 

soft Hilbert space such as the soft  l2 space and some inequality type results on this 
space have been given. Moreover, it has been demonstrated that each soft Hilbert 
space contains an orthonormal basis, which can be derived using the Gram–
Schmidt orthogonalization procedure within a ‘soft inner product space’. 

Preliminaries 

Definition 2.1 (see [8]): Let 𝑊 be an universe set and 𝐸 be a set of parameters. 

Let 𝑃(𝑊) be the power set of 𝑊 and 𝐶 denotes a non-empty subset of 𝐸. A soft set 

over 𝑊 is t defined by the pair (𝐹, 𝐶), where 𝐹 define as 𝐹: 𝐶 → 𝑃(𝑊). In essence, a 

soft set over 𝑊 can be viewed parametrized collection of subsets of the universe 𝑊.  

For each 𝜀 ∈ 𝐶, 𝐹(𝜀)  may be referred as the set of 𝜀- approximate elements of the 

soft set (𝐹, 𝐶) .  

Definition 2.2 (see [14]): For two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over a common 

universe 𝑈, we say that (𝐹, 𝐴) is a soft subset of (𝐺, 𝐵) if 
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(1) 𝐴 ⊆ 𝐵 and 

(2) for all 𝑒 ∈ 𝐴, 𝐹(𝑒) ⊆ 𝐺(𝑒) 

We write (𝐹, 𝐴)  ⊂̃  (𝐺, 𝐵).  (F,A) is said to be a soft super set of (𝐺, 𝐵), if (𝐺, 𝐵) is a soft subset of (𝐹, 𝐴). We 

denote it by (𝐹, 𝐴)  ⊃̃  (𝐺, 𝐵). 
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= < 𝑥̃(𝜆), 𝑥̃(𝜆) > + < 𝑥̃(𝜆), 𝑦̃(𝜆) > +< 𝑦̃(𝜆), 𝑥̃(𝜆) >  +< 𝑦̃(𝜆), 𝑦̃(𝜆) >  + < 𝑥̃(𝜆), 𝑥̃(𝜆) > −< 𝑥̃(𝜆), 𝑦̃(𝜆) >  −

< 𝑦̃(𝜆), 𝑥̃(𝜆) > +< 𝑦̃(𝜆), 𝑦̃(𝜆) > 

= 2 (< 𝑥̃(𝜆), 𝑥̃(𝜆) > + < 𝑦̃(𝜆), 𝑦̃(𝜆) > ) = 2 (‖𝑥̃(𝜆)‖2 + ‖𝑦̃(𝜆)‖2 ) , for all 𝜆 ∈ 𝐴.  

Therefore, ‖𝑥̃ + 𝑦̃‖2
2̃ + ‖𝑥̃ − 𝑦̃‖2

2̃ = 2 (‖𝑥̃‖̃2
2 + ‖𝑦̃‖̃2

2) . This gives the parallelogram law for soft 𝑙2̃ space. 

Remark 3.6: Since the only 𝑙𝑝 norm which satisfies the parallelogram law in normed linear space is for 𝑝 = 2, so by 
using the result that a ‘Banach space’ which satisfies the ‘parallelogram law’ is a ‘Hilbert space’, we can say that the 

only soft 𝑙𝑝 space which can be consider as a Soft Hilbert space is soft 𝑙2 space. 

Conclusion: 
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In this present work we have analysed some significant characteristic like orthogonality, orthonormality in 

soft Hilbert space are investigated. Also we discussed the soft  l2 space as an example of soft Hilbert space and some 
inequalities on this space have been given. In addition, we established that every soft Hilbert space admits an 
orthonormal basis, constructed via the Gram–Schmidt orthogonalization process on a soft inner product space. 
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