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Abstract:

Main aim of this work is to discuss some important characteristics of soft Hilbert
Space. In this present work we have analysed some important properties like orthogonality,
orthonormality in soft Hilbert space. We discussed some examples of soft Hilbert space such
as the soft 1> space and some inequality results on this space have been given. Moreover, it
has been demonstrated that each soft Hilbert space contains an orthonormal basis, which can
be derived using the Gram—Schmidt orthogonalization procedure within a soft inner
product space.
AMS Classification: 0SE72, 08A72
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Introduction

In the year 1999, Molodtsov [[167] initiated the theory of soft sets as a new
mathematical tool for dealing with uncertainties. He has demonstrated numerous
applications of this theory in addressing practical problems across various fields.
Research works in soft set theory and its applications in various fields have been
progressing rapidly since Maji et al. ([187,[14]) introduced several operations on
soft sets and applied it to decision making problems. In the line of reduction and
addition of parameters of soft sets some works have been done by Chen [87, Pei
and Miao [17] , Kong et al. [127] , Zou and Xiao [197]. Aktas and Cagman [1]
introduced the notion of soft group and discussed various properties. Jun ([117)
investigated soft BCK/BCI - algebras and its application in ideal theory. Feng et al.
[9] worked on soft semirings, soft ideals and idealistic soft semirings. Ali et al. [2]
and Shabir and Irfan Ali ([27]) studied soft semigroups and soft ideals over a semi
group which characterize generalized fuzzy ideals and fuzzy ideals with thresholds
of a semigroup. The idea of soft topological spaces was first given by M. Shabir, M.
Naz [187 and mappings between soft sets were described by P. Majumdar, S. K.
Samanta [157]. Feng et al. [10] worked on soft sets combined with fuzzy sets and
rough sets.

In ([47,[5]) Das and Samanta have introduced a notion of soft real sets,
soft real numbers, soft complex sets, soft complex numbers and some of their basic
properties have been investigated. In ([67],[7]) Das and Samanta introduced the
concept of “soft metric', “soft linear spaces', ‘soft norm' on a “soft linear spaces' and
studied various properties of “soft metric spaces' and “soft normed linear spaces' in
details. In [8] they have introduced a notion of soft inner product on soft linear
space and studied some of its properties.

In this work we have studied some significant characteristic of the soft
Hilbert space. Properties like orthogonality, orthonormality in soft Hilbert space
are investigated. In the second section some preliminary results are mentioned. In
the third section, notion of orthogonality, orthonormality in soft Hilbert space are
given and its properties are being investigated. Also we discussed some examples of
soft Hilbert space such as the soft 1> space and some inequality type results on this
space have been given. Moreover, it has been demonstrated that each soft Hilbert
space contains an orthonormal basis, which can be derived using the Gram-
Schmidt orthogonalization procedure within a ‘soft inner product space’.

Preliminaries

Definition 2.1 (see [87]): Let W be an universe set and E be a set of parameters.
Let P(W) be the power set of W and C denotes a non-empty subset of E. A soft set
over W is t defined by the pair (F, C), where F define as F: C - P(W). In essence, a
soft set over W can be viewed parametrized collection of subsets of the universe W.
For each € € C, F(&) may be referred as the set of - approximate elements of the
soft set (F,C) .

Definition 2.2 (see [147): For two soft sets (F,A) and (G,B) over a common
universe U, we say that (F, A) is a soft subset of (G, B) if
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(1)A € B and

(2)for all e € A, F(e) € G(e)

We write (F,A) € (G,B). (F,4) is said to be a soft super set of (G,B), if (G,B) is a soft subset of (F,4). We
denote it by (F,4) 3 (G,B).

Definition 2.3 (sce [14]): Two soft set (F, A) and (G, B) over a common universe U are said
to be equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of (F, A).

Definition 2.4 (see [14]): The complement of a soft set (F,A) is denoted by (F,A)¢ =
(F¢,A), where F€: A = P(U) is a mapping given by F(e) = U — F(e). forall e € A.

Definition 2.5 (see [14]): A soft set (F,A) over U is said to be a NULL soft set denoted by
®if forall e € A, F(e) = ¢ (null set).

Definition 2.6 (see [ 14]): A soft set (F,A) over U is said to be an absolute soft set denoted by
Uifforalle € A,F(e) = U.

Definition 2.7 (see [4]): Let U be a non-empty set and A be a non-empty parameter set. Then
a function € : A = U is said to be a soft element of U, A soft element € of U is said to belongs
to a soft set B of U , which is denoted by £ € B, if £(e) € B(e),¥ e € A. Thus for a soft set
B of U with respect to the parameter set A, we have B(e) = {£(e):& € B}, e € A.

Definition 2.8 (sce [4]): Let R be the set of real numbers and B(R) the collection of all non-
empty bounded subsets of R and A taken as a set of parameters. Then a mapping F: A =
B(R) is called soft real set. It is denoted by (F, A). If specifically (F,A) is a singleton soft
set, then after identifying (F,A) with the corresponding soft element, it will be called a soft

real number. The set of all soft real numbers is denoted by R(A).

We use notations ¥, ¥, Z to denote soft real numbers whereas ¥,¥,Z will denote a particular
type of soft real numbers such that (A) = x for all A € A. For example 0 is the soft real

number where 0(4) = 0,V 1 € A.

Definition 2.9 (sce [4]): For two soft real numbers ¥, § we define
(i) # € §if #(1) < 3(2) forall 1 € A.
(i) = § if #(A) = 3(A) forall A € A,

(iii) # 2 § if #F(A) < (1) forall A € A.
(iv)# S §if #(A) > $(A) forall A € A.

Definition 2.10 (see [4]): A soft real number 7 is said to be non-negative if #(4) 2 0,VAi1€
A. We denote the set of all non-negative soft real numbers by R(A4)" .

96



Remark 2.11 (see [7]): Let X be a non-empty set. Let X be absolute setie. F(A) = X,VA €
A, where (F,A) = X. Let S(X) be the collection of the null soft set ® and those soft sets
(F,A) over X for which F(1) # ¢, VA € A.For (F,A)(# ®) € S(X), the collection of all
soft elements of (F, A) will be denoted by SE(F, 4).

Definition 2.12 (see [7]): Let V be a vector space over a field K and let A be a parameter set.
Let (G, A) is a soft set over V. Now G is said to be a soft vector space or soft linear space of

V over K if G(A) is a vector space of V, ¥ 4 € A.

Definition 2.13 (see [7]): Let G be a soft vector space of V over K. Then a soft element of G
is said to be a soft vector of G. In a similar manner a soft element of the soft set (K, A) is said

to be a soft scalar, K being the scalar field.

Definition 2.14 (see [8]): Let C be the set of complex numbers and p(C) be the collection of
all non-empty bounded subsets of the set of complex numbers. 4 be a set of parameters. Then
a mapping F: A — p(C) is called a soft complex set. It is denoted by (F,A). If in particular
(F,A) is a singleton soft set; then identifying (F,A) with the corresponding soft element, it
will be called a soft complex number. The set of all soft complex numbers is denoted by

C(A).

Definition 2.15 (see [8]): Let (F, A) be a soft complex set. Then the complex conjugate of
(F,A) is denoted by (F,A) and is defined by F(1) = {Z:z€ F(1)} ,VA€ A, where Z
is complex conjugate of the ordinary complex number z . The complex conjugate of a soft

complex number (F,A)is F(A) = Z,€F(1) ,VA€EA.

Definition 2.16 (see [8]): Let (F, A) be a soft complex number. Then the modulus of (F, 4)
is denoted by (]F|,A) and is defined by |F|(A) = |z];z € F(1),YA € A , where z is an
ordinary complex number. Since the modulus of each ordinary complex number is a non-
negative real number and by definition of soft real numbers it follows that (|F|, A) is a non-

negative soft real number for every soft complex number (F, 4).

Definition 2.17 (see [8]): Let X be the absolute soft vector space i.e., X(1) =X ,V1€ A.
The a mapping <.> : SE(X) x SE(X) — C(A) is said to be a soft inner product on the soft

vector space X if <.> satisfies the following conditions:

(I1).<%,¥>>0,forall¥ € Xand< %,¥ >=0ifandonlyif ¥ = ®;
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(I12). < %, ¥ > =< y,X >, where bar denote the complex conjugate of soft complex
numbers;

(B)y<axy>=a<iy>,forallx,y € X and for every soft scalar &;
(14) Forall ¥,y € X, <X¥+7V,2>=<X,Z2>+<¥y,Z>.

The soft vector space X with a soft inner product <.> on X is said to be a soft inner product
space and is denoted by ( X,<.>,4) or (X,<.>). (11), (12) , (13) and (14) are said to be soft
inner product axioms.

Proposition 2.18 (scc [8]): Let { <.>;: 4 € A } be a family of crisp inner products on a crisp
vector space X. Then the mapping <.>: SE(X) x SE(X) = C(A) by <%7> (1) =<
%(A),7(2) >, , VA€ A, %,7 € X isasoft inner product on the soft linear space X,

Theorem 2.19 (sce [8]): If a soft inner product <. > satisfies the condition (I5) , and if for
each A € A, <.>;: X x X — C be a mapping such that forall ((,n) EX XX <&, np>3=<
%,¥>(A), where ¥,7 € X such that (1) = §,7(A) =7n. Then foreach A€ A, <.>; is

an inner product on X.

(I5) For each (§,7)) EX XX and €4 , {<X,y>(1):%,y € X such that ¥(1) =¢,
#(A) = n } is a singleton set.

Definition 2.20 (see [7]): Let G be a soft vector space of V over K. Let@; ,a3,.., @, € G.
A soft vector £ is said to be a linear combination of the soft vectors @; , @3 , ..., @, if # can be

expressed as a f = €;.@; + C; @3 + -+~ + C, @, , for some soft scalars ¢; ,65 , ..., Gy, -

Definition 2.21 (see [7]): A finite set of soft vectors { @ , @3, ..., @, } of soft vector space G
is said to be linearly independent in G if there exists soft scalars & ,& , ..., G, not all 0 such
that ¢;.a@7 + & @z + -+ C,@, = ® . An arbitrary set S of soft vectors of G is said to be

linearly dependent in G if there exists a finite subset of S which is linearly dependent in G.

Definition 2.22 (see [20]): Let X be a soft linear space. A set S of soft vectors in X is said to
be a basis of X if § is linearly independent and S generates X i.c. any soft element of X can be

expressed as a linear combination of those linearly independent soft vectors.

Definition 2.23 ( see [20]): If the basis set S of soft vectors is finite then X is said to be a
finite dimensional soft linear space and the number of soft vectors of the basis is called the

dimension of the soft linear space X.
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(I12). < X%,y >=< y,X >, where bar denote the complex conjugate of soft complex
numbers;

B)y<axy>=a<ixy>,forall,y € X and for every soft scalar @;

(4) Forall%,y € X, <X+7,2>=<X,Z2>+<¥y,Z>.

The soft vector space X with a soft inner product <. > on X is said to be a soft inner product
space and is denoted by ( X,<.>,4) or (X, <.>). (1), (12) , (I3) and (14) are said to be soft
inner product axioms.

Proposition 2.18 (see [8]): Let { <.>;: A € A } be a family of crisp inner products on a crisp
vector space X. Then the mapping <.>: SE(X) x SE(X) - C(4) by <%y> (1) =<
£(2), () >, ,VA€EA, %,7 € X is a soft inner product on the soft linear space X.

Theorem 2.19 (see [8]): If a soft inner product < .> satisfies the condition (I5) , and if for
cach A € A, <.>;: X X X = € be a mapping such that forall (§,n) EX XX ,<én>=<
£,9> (), where #,¥ € X such that ¥(1) = & ,9(A) = 1. Then for each 1 € A, <.>; is

an inner product on X.

(I5) For each (§,n) EXxX and €A , {<X,7>(1): %,y € X such that (1) = ¢,
¥(A) = n } is a singleton set.

Definition 2.20 (see [7]): Let G be a soft vector space of V over K. Let@j,a3,.., @, € G.
A soft vector £ is said to be a linear combination of the soft vectors @; , @ , ..., @, if § can be

expressed as a f§ = €1.@; + C; @ + -+ + C, @, , for some soft scalars ¢; , 63, ..., G, -

Definition 2.21 (see [7]): A finite set of soft vectors { @ , @3 , ..., @ } of soft vector space G
is said to be linearly independent in G if there exists soft scalars &;,& , ..., G, not all 0 such
that €;.@; + G @3 + -+ C,&@, = ® . An arbitrary set S of soft vectors of G is said to be

linearly dependent in G if there exists a finite subset of S which is linearly dependent in G.

Definition 2.22 (see [20]): Let X be a soft linear space. A set S of soft vectors in X is said to
be a basis of X if § is linearly independent and S generates X i.e. any soft element of X can be

expressed as a linear combination of those linearly independent soft vectors.

Definition 2.23 ( see [20]): If the basis set S of soft vectors is finite then X is said to be a
finite dimensional soft linear space and the number of soft vectors of the basis is called the

dimension of the soft linear space X.
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Definition 2.24 (See [20]) : Let X be soft inner product space which satisfies (I5). Then X is
said to be complete if it is complete with respect to the soft metric induced by soft inner

product. A complete soft inner product space is said to be a soft Hilbert space and we denote

the soft Hilbert space by H.
3. Soft Hilbert Space

Let X be a vector space over a field € of complex number, X is our initial universal set and A
be a non-empty set of parameters. Let X be the absolute soft vector space i.e. X(4) = X . for
all A € A. We use the notation ¥, ¥, Z to denote soft vectors of a soft vector space and 7,5, &
to denote soft real numbers whereas 7, 5, £ will denote a particular type of soft real numbers
such that #(1) = r , for all 1 € A. For example 0 is the soft real number where 0(1) = 0 , for
all A € A. In this section we have given the notion of orthogonality, orthonormality in soft

Hilbert space and also discuss some properties of this space.

Definition 3.1: Let L be a non-null soft subset of the soft Hilbert space A such that L(4) #
¢,V A € A. Two soft vectors ¥, § of H are said to be orthogonal if < ¥, > = 0. In symbol,
we write ¥ 1 7 . If ¥ is orthogonal to every soft vectors of L then we say that ¥ is orthogonal

to L and we write ¥ L L.

Definition 3.2: Let A be a Hilbert space. Then a collection B of soft vectors of H is said to be

orthonormal if forall X,y € B

0;ifx+y
y

<£'y>={1:ifi=

If the soft set B contains only a countable number of soft vectors then we can arrange it in a
sequence of soft vectors and call it an orthonormal sequence.
Definition 3.3: Let A be a Hilbert space. Then a basis S of soft vectors of H/ is soft

orthonormal basis if the set § is orthonormal i.e. forall X,y € S,

— 0;ifx+
KA 1;if%=

=

Theorem 3.4: Every soft Hilbert space of finite dimension possesses an orthonormal basis,
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Proof: Let {X},%3,..,X;} be a basis of the finite dimensional soft Hilbert space f . An
orthogonal basis of  will be obtained by the Gram-Schmidt process of orthogonalisation.
Since the basis vectors are non-null, we select one of them , say Xj , and consider as the first

member of the new basis. For convenience we rename itas y; i.e. y; =X .
Now let ¥; = X; — 61y; , where &1y, is the projection of X3 upon y7j.
Then <¥; 1 >=<G-GH .1 >=<%.1> G<Wn.N>

HaFD> e i E
s> <yVi1.y1>= 0.

=<5G.5H> -

This gives ¥; is orthogonal to X; and {y;,¥3 )} = L {y; .X; } = L{X] ,X3} , where L{V; .¥3 }

denote the linear span of the soft vectors y; and ¥ .

oz, e = 12
x i —
Y2 Tz >Y1

‘<) xz
‘<: ‘<r

Now clearly % € L{¥;.Vz) . Let y3 =% —d, y; —d2 V3 . where d; y;,d, V3 are the

projections of X3 upon y;, V3 respectively.

Then, <¥3.z>=<%—d;y;—d;¥:.%;>

<X3, ~h<n.2> <y >

‘<l

~

7' dz < YZ'T >, since < yl .Y2 =0

<KGV2> oo
= <yuy:>
Tids " Y2)2

—~

=< ,z>-

&

—-<X3,yZ> <X3,YZ>=0
In a similar way one can check that < ¥3,v; >=0.

This gives 3 is orthogonal to ¥3, ¥; and L{y; ,¥7.V3} = L {V1.V2 . %3 } = L{X] . %2, %3}.

|
ol

Now Xz €L{Y1.¥2.V3} - Lt Vi =X —F Vi -5V -7KY; . where fi V1.5 52,7373
are the projections of X; upon Vj ,
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As proceeding above we can show that ¥; is orthogonal to y; ,¥7 ,¥3 and L{V; . ¥ .V3.V3} =
L{y1.¥2. 53,55 } = L{X, ., %2, %3, %3}

~

Thi>. <TfH>__ <Th
V1 >

>~
1 y g >Y3

Va=%3— e 2
<yaY2> <y V1

Vi
This process concludes after a finite number of steps because, at each step, a vector from the

original basis is replaced with a vector from the targeted orthogonal basis. Thus we have,

<’—G-§’3>y~ < X ¥n-1>
~ —— 3 e m——
<yu¥1 > <Va¥2> <Vn-1:¥n—1 >

—

n-1

and {¥1,¥3,....¥5 } is an orthogonal basis of the soft Hilbert space H . This completes the

proof.

Example 3.5 (Soft Hilbert Space): For p = 2, the soft vector space (F, A) of R! over R ,
define as F(A) =P « R!,V A € A with the soft [? norm is a soft Hilbert space and denoted
by 12 , where the soft {? norm is defined as, ||. II:SE(I-}) — R(A)" by, ||Z|I(2) = |ZA)|l> =

(Siel& DI

Definition 3.7: Let £ be a fixed non-null soft vector in a Hilbert space A. Then for a non-null
soft vector @ in A there exists a unique soft real number ¢ such that & — éf is orthogonal to
B. ¢ is determined by the relation < @ — éf,f > =0 . Therefore < & ,f >=¢< .8 >,
giving € = <2p>

<pp>"
¢ is said to be the scalar component of @ along f§ and ¢f is said to be the projection of @

upon f.

Theorem 3.8 : For ¥,y € 2,
% + 913 + 1% — 7113 = 2 (17113 + (I7112)

Proof: Let %,y € (2 . Then we have #(A) € 12 and 7(4) € I2. Now since [2 is a Hilbert

space we have,
1(2) + F(DIIZ + 12(A) — FDIIE

=< X(A) +¥(0), X)) + ¥(A) > +< X(A) - y(A),x(A) - ¥(A) >

=< X)), X)) >+ <X, D) > +<F), X)) > +<JAD), (D) > + < XD, X)) > -< (D), F(A1) > —
<IA,xA) > +< I, y(D) >
=2(<E,ZA) > + < I, >) =2 (IXDII* + IFDII?) , for all 1 € A.
Therefore, ||fﬁ||§ + ||55’—:?7||% =2 (||?Z]|§ + ||)7||§) . This gives the parallelogram law for soft I2 space.
Remark 3.6: Since the only [” norm which satisfies the parallelogram law in normed linear space is for p = 2, so by
using the result that a ‘Banach space’” which satisfies the ‘parallelogram law’ is a ‘Hilbert space’, we can say that the
only soft [P space which can be consider as a Soft Hilbert space is soft [? space.

Conclusion:
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In this present work we have analysed some significant characteristic like orthogonality, orthonormality in
soft Hilbert space are investigated. Also we discussed the soft 1% space as an example of soft Hilbert space and some
inequalities on this space have been given. In addition, we established that every soft Hilbert space admits an
orthonormal basis, constructed via the Gram—Schmidt orthogonalization process on a soft inner product space.
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