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Abstract 
Drought poses a significant threat to water security, agriculture, and socio-

economic stability in semi-arid regions like Chitradurga Taluk, Karnataka, India. This 
study integrates geospatial techniques and meteorological indices (SPI, NDVI, NDWI, 
LST) to assess drought risk from 2000 to 2020. Rainfall analysis reveals high variability, 
with stations like Bahadhurghatta recording extreme fluctuations (270.96 mm in 2010 to 
zero in subsequent years), while others (e.g., Holalkere) show stability (778.44 mm average). 
The SPI identifies severe droughts (e.g., 2019, SPI: -2.16) and wet extremes (2011, SPI: 
2.00), correlating with agricultural stress. Vegetation health, accessed via NDVI and VCI, 
indicates severe stress in 2000 (NDVI: -0.3; VCI: 1 to 25) due to low rainfall and high land 
surface temperature (LST: 47°C), with recovery in 2015 to 2020 (NDVI: 0.41; VCI: 71 
to143) as temperatures moderated (LST: 40 to 41°C). Hydrological conditions, evaluated 
through NDWI, show acute water scarcity in 2000 (NDWI: -0.41) and improved 
availability in 2015 (NDWI: 0.39). Spatiotemporal analysis highlights the interplay 
between meteorological deficits, thermal stress, and ecological responses, with geospatial 
mapping identifying high-risk zones for targeted mitigation. Machine learning and trend 
analysis further enhance drought prediction by linking drivers like groundwater depletion 
and land use changes. The study advocates for multi-index drought monitoring to improve 
early-warning systems and adaptive strategies, supporting sustainable development goals 
aligned water management. Findings offer a replicable framework for semi-arid regions 
globally, emphasizing integrated approaches to build resilience against climate extremes. 
Keywords: Drought, Geospatial, Drought Indices, Rainfall, Semi-arid region  

Introduction 
Drought is a complex, persistent climatic extreme that undermines water security, 
agricultural production and socio-economic stability, especially in semi-arid regions 
such as the Chitradurga Taluk, Karnataka, India (Pradeep et al. 2022; Talukdar and 
Ali, 2022; Wilhite et al., 2014; Mishra and Singh, 2010). Drought is defined as a 
natural hazard with long-lasting pattern of precipitation deficits aggravated by 
climate change (IPCC, 2021; Dogan et al., 2012), Its risk assessment long-term 
approach requires, combined to represent the multiple consequences, technique 
which integrate geospatial technologies and meteorological indices (Tarate et al., 
2024; Chowdary and Kesarwani, 2023; Hayes et al., 2011; Zargar et al., 2011). 
Many researchers have recommended geospatial techniques such as geographic 
information systems (GIS), remote sensing (RS) and global navigation satellite 
system (GNSS) are efficient in significant drought monitoring and analysis (Das et 
al., 2021; Palchaudhuri and Biswas, 2020; Hegde and Patil, 2019;  Basavaraj Hutti 
and Nijagunappa, 2012, 2011; Kogan, 1995; Tucker, 1979; Palmer, 1965) animal 
stress on vegetation NDVI, land surface temperature (LST), and soil moisture (SM) 
provide accurate spatial-temporal patterns (Zhao et al., 2016; Zhang et al., 2016). 
Frequently many researchers are used drought severity indices contain the 
standardized precipitation index (SPI), standardized precipitation 
evapotranspiration index (SPEI) and palmer drought severity index (PDSI) 
(Sridhara et al., 2021; Tan et al., 2015; Sruthi et al., 2015; Sumanta et al., 2013; 
Vicente-Serrano et al., 2010; McKee et al., 1993; Palmer, 1965), but their use in 
conjunction with geospatial data on the spatial dimension of drought is not yet 
widespread in semi-arid India (Thomas et al., 2016). The rain-shadow area 
Chitradurga Taluk is located in the middle of the Karnataka state is prone to 
drought and, accountable to inconsistent monsoon activities with extreme 
groundwater withdrawal and land degradation (IMD, 2020; NRSA, 2019; CGWB, 
2018), warranting advanced assessment frameworks for these risks.  
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Earlier studies demonstrate that the integration of  satellite-derived indices (e.g., MODIS NDVI, NDWI, 
Landsat LST) with ground-based meteorological products can provide information to improve drought early-
warning systems (Agha Kouchak et al., 2015; Jain et al., 2020). However, large inconsistency remains in region on 
both sides of  implementations in particular connecting with drought indices to socio-economic susceptibility and 
land use alterations (UNDRR, 2019; Turner et al., 2007). This study aims to fill these gaps by providing an 
integrated approach that combines multi-sensor RS data (Landsat 8 OLI, Sentinel-2), GIS based spatial analytics and 
drought indices (SPI, SPEI) to derive drought risk at the micro-watershed scales (Jain et al., 2020). The methods 
involves using machine learning algorithms (Random Forest, SVM) to find drought drivers (Ganguli & Reddy, 2014) 
and the Mann-Kendall test (Mann, 1945; Kendall, 1975) of  trend, providing an applicable model for semi-arid areas 
worldwide. Make use of  the drought intensity and crop yield data (UNCCD, 2022; FAO, 2021) and groundwater 
levels (from GSDA, 2020), this study offers actionable insights for policymakers to preference irrigation investments 
and execute to improve the water management approach (Beithou et al., 2022; World Bank, 2018; NWP, 2012). The 
research study also initiates a new arrangement to assess the drought impact based on target objective from the 
sustainable development goals in 2030. The study appearance associations with sustainable development goals (UN, 
2015) and provide for the environmental robust planning growing literature (Mall et al., 2021; Huggi et al., 2020; 
Kavy et al., 2006). 
 

The Study Area 
The study area is in the Chitradurga district of  Karnataka, India, specifically in Chitradurga Taluk, which 

covers an area of  about 1,388 km2 between latitudes 14°00' to 15°00' N and longitudes 76°00' to 77°00' E. It has a 
semi-arid climate, with erratic pattern of  an average annual 600 mm rainfall predominantly from the southwest 
monsoon (June–September) so that it is prone to recurrent droughts (Singh et al., 2004). The terrain is mostly 
undulating, rocky, and characterized by shallow, poor soils, as it belongs to the Deccan Plateau’s arid zone, limiting 
the ability of  the soil to retain moisture, and thus agricultural productivity. The primary land utilization patterns 
comprise non-irrigated farming (predominantly sorghum, millet varieties, and legumes), sparse woodland areas, and 
unproductive terrain. Limited irrigation is available from water bodies such as the Vanivilas Sagar reservoir and 
subterranean water resources. In the context of  geological studies, the presence of  granite and gneiss formations 
plays a crucial role in determining the replenishment and accessibility of  underground water resources within the 
region. These rock types significantly influence the processes of  groundwater recharge and its subsequent 
availability in the area under consideration. The region's flora primarily consists of  drought-tolerant species, 
including spiny shrubs and deciduous trees adapted to arid conditions. The area exhibits diverse soil compositions, 
ranging from reddish sandy loams to dark clay-rich soils, each possessing distinct water retention properties and 
agricultural suitability (Shankar et al., 2017). These variations in soil characteristics influence the potential for 
different crop cultivations across the landscape (Kavy et al., 2006). Chitradurga, an area historically vulnerable to 
extreme weather events such as drought has been facing the severe consequences of  acute drought exacerbated due 
to effects of  climate variability, over- 

 

 

Fig.1. Location map of Chitradurga Taluk, Karnataka, India 
extraction of groundwater and unsustainable agriculture practices, with significant socio-economic implications 
manifested through crop failures, sustainable loss of available water and rural distress (Huggi et al., 2020). This 
study combines geospatial methods (i.e., remote sensing and GIS) with drought indices (i.e., Standardized 
Precipitation Index (SPI), Normalized Difference Vegetation Index (NDVI), and Soil Moisture Index (SMI)) to 
evaluate spatiotemporal drought patterns, vulnerability, and risk. Our research methodology involves conducting a 
geospatial examination of data acquired from multiple satellite sources, including Landsat and MODIS platforms, as 
well as precipitation estimates such as CHIRPS. To ensure the accuracy of our findings, we will utilize terrestrial 
meteorological and hydrological measurements for output validation. The study, which is based on the integration 
of these methods, will use climate data to prepare a holistic drought risk assessment framework that will also guide 
policies, such as adoption of water-efficient irrigation practices, drought-resilient cropping systems and create an 
early warning system in the regions. This study would contribute to the sustainable management of resources in 
semi-arid areas, which are susceptible to recurring climate extremes and face uncertainties related to future climate 
change. The findings would aid in addressing the challenges posed by biennial climate fluctuations and potential 
long-term climate shifts in these vulnerable regions. 
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Materials and Methodology 
The study employs an integrated geospatial and drought indices approach to assess drought risk in 

Chitradurga Taluk, Karnataka, a semi-arid region prone to recurrent droughts due to erratic rainfall and high 
agricultural dependence (Lakshmi et al., 2020; Mishra & Singh, 2010). The methodology involves four key steps: (1) 
Data collection, where multi-source datasets are acquired, including remote sensing data (Landsat LST and NDVI), 
meteorological data (IMD rainfall records, 2010–2020), and ancillary data (Soil maps from NBSS&LUP, LULC from 
NRSC) (Pandey et al., 2022); (2) Drought indices computation, where Standardized Precipitation Index (SPI) (McKee 
et al., 1993; Wu et al., 2001; Vicente et a., 2010) is calculated at 12 month scales using rainfall anomalies SPI = (Xi-

Xm) / σ and transforming cumulative probability to Z-scores using piecewise approximation are classified into 
extremely wet (2.00 >), very wet (1.50 to 1.90), moderately  wet (1.00 to 1.49), normal (-0.99 to 0.99), moderately 
dry (-1.00 to -1.49), severely dry (-1.50 to -1.99), and extremely dry (< -2.00) drought (Mall and Sonkar, 2021; 
Lloyd-Hughes and Saunders, 2002 and WMO, 2012). Vegetation Condition Index (VCI) (Kogan, 1995) derived from 
NDVI to assess crop stress, and Temperature Condition Index (TCI) (Karnieli et al., 2006) were derived from NDVI 

(VCI = NDVIi – NDVImin NDVImax − NDVImin × 100 VCI = NDVImax − NDVImin NDVIi − NDVImin × 100) 
to capture crop and thermal stress (Kogan, 1995; Karnieli et al., 2006). From LST (TCI = LSTmax – LSTi LSTmax 
– LSTmin × 100 TCI = LSTmax – LSTmin LSTmax – LSTi × 100) to quantify thermal stress; (3) Geospatial 
analysis, where GIS tools (ArcGIS 10.8, QGIS) are used for spatial interpolation (Kriging) of rainfall, NDVI trend 
analysis and weighted overlay analysis (50% SPI, 30% VCI, 20% LST) to generate a composite drought risk map 
[Drought Risk = (0.5 × SPI) + (0.3 × VCI) + (0.2 × LST) Drought Risk = (0.5 × SPI) + (0.3 × VCI) + (0.2 × 
LST)] map (Wilhite & Glantz, 1985); and (4) Validation, where results are cross-verified with historical drought 

records against Kappa coefficient κ > 0.75 and ground surveys (24 field points, 2020). Statistical validation 
correlated SPI with reservoir levels (r = 0.72, p < 0.01), ensuring robustness (Zargar et al., 2011). 

Data Analysis and Discussions 
1. Rainfall Analysis  
 The comprehensive study on the spatial and temporal distribution of rainfall in Chitradurga Taluk, 
utilizing geospatial techniques and drought indices to evaluate drought risk (Sanjay, 2022; Thomas et al., 2016; Tan 
et al., 2015; Shahabfar  and  Eitzinger, 2013; Naresh et al., 2012). The analysis is based on rainfall data collected 
from 24 rain gauge stations across the region, spanning from 2010 to 2020, with each station's annual rainfall 
recorded alongside its geographical coordinates (latitude and longitude) as shown in the table. 
Table 1. Rainfall data across study area from 2010 to 2020 
 

# Long Lat 
Rainguage 

Station 
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Mean 

1 76.18 14.43 Bahadhurghatta 270.96 136.92 0 0 0 0 0 0 0 675 890.4 179.28 

2 76.194 14.37 
Bharmasagara 
SRRG 

942.96 382.92 639 842.4 1045.92 696.96 504 465.48 504 659.04 891.2 681.48 

3 76.4 14.21 
Chitradurga 
SRRG 

1167 408 603 840.96 1078.92 625.92 738.96 666.48 738.96 742.56 891.12 759.72 

4 76.28 14.21 Hiregutanur 1017 528.96 604.92 722.4 936 529.92 117 130.92 117 547.08 949.2 566.16 

5 76.31 14.29 Katralu 687 183.96 741.96 789.48 837 558.96 270.96 421.44 270.96 731.52 891.12 607.68 

6 76.205 14.28 Sirigere 1119 1013.4 907.92 1000.44 1092.96 747.96 462 532.44 462 77.52 920.16 770.52 

7 76.39 14.21 Turuvanur 910.92 211.92 490.92 660.36 829.92 676.92 249 391.44 249 741.6 949.2 553.848 

8 76.38 14.23 
Chitradurga 
RLY 

1209.96 288.96 690.96 897.96 1104.96 625.92 0 0 0 0 949.2 524.28 

9 76.652 14.06 
Challakere 
SRRG 

762.96 180 640.92 627.96 615 529.92 274.92 298.92 274.92 630.72 938.64 529.32 

10 76.739 14.232 Devaramarikunte 736.92 217.92 399 465.96 532.92 561 237.96 240.96 237.96 591.24 938.64 469.68 

11 76.545 14.469 Nayakanahatti 702.96 343.92 600.96 613.44 625.92 600.96 252.96 316.44 252.96 635.52 891.12 542.88 

12 76.644 13.95 Babbur form 789 330.96 504 651.96 799.92 816.96 303.96 375.96 303.96 693.24 938.64 604.68 

13 76.62 13.94 Hiriyur HMS 847.92 366.96 495 640.92 786.96 969.96 0 0 0 760.92 936 580.92 

14 76.047 14.099 Sugur 864 231.96 396 423.48 450.96 693.96 222.96 251.4 222.96 589.92 900 482.232 

15 76.162 14.128 Chickjajur 1077 402 480.6 683.28 885.96 1056 288 107.76 288 762 949.2 650.52 

16 76.177 14.052 Holalkere 1449 552.96 633 750 867 775.92 456.96 584.88 456.96 831 949.2 778.44 

17 76.328 14.033 Horakedevapura 1167.96 651 588 843.48 1098.96 885.96 432 659.4 432 913.32 939.84 824.16 

18 76.132 14.183 B. Durga 1065 505.92 648 876 1104 799.92 351 432.96 351 732 949.2 725.28 

19 76.279 14.023 Talya 1026.96 507 604.92 743.88 882.96 822 501 672 501 871.44 900 761.28 

20 76.388 13.889 Madadakere 312 162 229.92 340.44 450.96 693 295.92 592.92 295.92 919.56 949.2 530.52 

21 75.884 14.415 Davanagere TP 1035 547.92 516 706.44 897 636.96 568.92 638.4 568.92 1026.36 1344.7 784.08 

22 75.919 14.467 Davanagere Rly 936.96 352.92 468.96 623.88 778.92 411 484.92 569.4 484.92 999.36 1344.7 693.12 

23 76.045 14.395 Anagodu 645 385.92 546 658.44 771 672 483 489 483 693 891.12 611.76 

24 76.078 14.275 Maikonda 1185 618 555.96 775.92 996 549.96 384 471.96 384 725.16 890.4 701.04 

Mean 913.685 396.35 541.08 674.145 811.255 664.085 328.35 387.94 328.35 689.545 957.59 
  

 The data reveals significant variability in rainfall patterns, both spatially and temporally, with some 
stations experiencing extreme fluctuations such as Bahadhurghatta, which recorded 270.96 mm in 2010 but zero 
rainfall in subsequent years until a sharp increase to 890.4 mm in 2020, highlighting the region's susceptibility to 
erratic weather. The average rainfall across all stations over the decade was approximately 913.685 mm, but this 
masks the stark disparities between stations, such as Bharmasagara SRRG (681.48 mm) and Chitradurga SRRG 
(759.72 mm), which received relatively consistent rainfall, versus stations like Hiregutanur (566.16 mm) and 
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Madadakere (530.52 mm), which faced more pronounced dry spells. The study employs geospatial techniques to map 
these variations, classifying the region into five distinct categories very low, low, moderate, high, and very high 
rainfall zones to better visualize and assess drought risk. This classification is critical for understanding the spatial 
distribution of drought vulnerability, as areas with consistently low or erratic rainfall, such as Bahadhurghatta and 
Madadakere, are at higher risk of drought compared to regions like Holalkere (778.44 mm) and Horakedevapura HD 
(824.16 mm), which exhibit more stable and higher rainfall are shown in the spatial distribution maps figure 2. 

 

Fig.2. Spatial distribution of rainfall trends from 2010 to 2020 

2. Standardized Precipitation Index (SPI) Analysis  
 The study provides a detailed examination of drought conditions in the region using the SPI, a widely 
recognized metric for quantifying precipitation deficits over multiple time scales (Paulo et al., 2012). The study 
spans from 2010 to 2020 and analyzes data from 24 locations across Chitradurga Taluk, revealing significant spatial 
and temporal variations in drought severity are shown in the table 2. The SPI values, which classify drought 
intensity into seven categories are shown in the table 3 and ranging from "extremely dry" (SPI ≤ -2.16) to 
"extremely wet" (SPI ≥ 2.1) highlight extreme conditions such as the severely dry year of 2019 in Bahadurghatta 
(SPI: -2.16) and Chitradurga RLY (SPI: -1.87 in 2015), as well as wetter periods like 2011 and 2015 in Chikkajajur 
and Sirigere (SPI: 1.11 to 2.00).  

Table 2. Spatial and temporal variations of study area across the 24 stations 
 
 

RG Station / 
Year 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Bahadhurghatta -1.27 -0.84 -0.29 -0.12 -0.07 -1.87 -0.05 -0.32 -0.05 -0.05 -0.08 
Bharmasagara 
SRRG 

0.06 -0.04 0.05 0.03 0.02 0.09 0.03 0.06 0.03 -0.10 -0.08 

Chitradurga 
SRRG 

0.50 0.04 0.03 0.03 0.02 -0.11 0.07 0.23 0.07 0.17 -0.08 

Hiregutanur 0.20 0.43 0.03 0.01 0.01 -0.38 -0.03 -0.21 -0.03 -0.45 -0.01 
Katralu -0.45 -0.69 0.11 0.02 0.00 -0.30 -0.01 0.03 -0.01 0.13 -0.08 

Sirigere 0.41 2.00 0.20 0.06 0.03 0.24 0.02 0.12 0.02 -1.92 -0.05 
Turuvanur -0.01 -0.60 -0.03 0.00 0.00 0.04 -0.01 0.00 -0.01 0.16 -0.01 
Chitradurga RLY 0.59 -0.35 0.08 0.04 0.03 -0.11 -0.05 -0.32 -0.05 -2.16 -0.01 

Challakere SRRG -0.30 -0.70 0.05 -0.01 -0.02 -0.38 -0.01 -0.07 -0.01 -0.18 -0.02 
Devaramarikunte -0.35 -0.58 -0.08 -0.04 -0.03 -0.29 -0.01 -0.12 -0.01 -0.31 -0.02 
Nayakanahatti -0.42 -0.17 0.03 -0.01 -0.02 -0.18 -0.01 -0.06 -0.01 -0.17 -0.08 
Babbur form -0.25 -0.21 -0.02 0.00 0.00 0.43 0.00 -0.01 0.00 0.01 -0.02 

Hiriyur HMS -0.13 -0.10 -0.02 -0.01 0.00 0.86 -0.05 -0.32 -0.05 0.22 -0.03 
Sugur -0.10 -0.53 -0.08 -0.04 -0.03 0.08 -0.02 -0.11 -0.02 -0.31 -0.07 
Chickjajur 0.32 0.02 -0.03 0.00 0.01 1.11 -0.01 -0.23 -0.01 0.23 -0.01 
holalkere 1.06 0.51 0.05 0.01 0.01 0.32 0.02 0.16 0.02 0.44 -0.01 
Horakedevapura 0.50 0.83 0.03 0.03 0.03 0.63 0.02 0.23 0.02 0.70 -0.02 

B. Durga 0.30 0.36 0.06 0.04 0.03 0.38 0.00 0.04 0.00 0.13 -0.01 
Talya 0.22 0.36 0.03 0.01 0.01 0.45 0.03 0.24 0.03 0.57 -0.07 
Madadakere -1.19 -0.76 -0.17 -0.06 -0.03 0.08 -0.01 0.17 -0.01 0.72 -0.01 

Davanagere TP 0.24 0.49 -0.01 0.01 0.01 -0.08 0.04 0.21 0.04 1.05 0.48 
Davanagere Rly 0.05 -0.14 -0.04 -0.01 0.00 -0.71 0.03 0.15 0.03 0.97 0.48 
Anagodu -0.53 -0.03 0.00 0.00 0.00 0.02 0.02 0.08 0.02 0.01 -0.08 
Maikonda 0.54 0.72 0.01 0.02 0.02 -0.32 0.01 0.07 0.01 0.11 -0.08 
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Table 3. Drought intensity 
 

SPI range Drought intensity class 

-1.25 to -0.91 Extremely dry 

-0.90 to -0.58 Severely dry 

-0.57 to-0.24 Moderately dry 

-0.23 to -0.09 Normal 

-0.1 to 0.43 Moderately wet 

0.42 to 0.78 Very wet 

0.77 to 0.11 Extremely Wet 
 

 The analysis underscores the erratic nature of rainfall in the region, with some areas experiencing drastic 
shifts between drought and surplus conditions within short periods. For instance, Sirigere recorded an SPI of 2.00 in 
2011 (extremely wet) but plummeted to -1.92 in 2019 (severely dry), illustrating the volatility of climatic patterns. 
Similarly, Challakere SRRG and Bahadurghatta faced prolonged dry spells, with SPI values consistently below -0.5 
in multiple years, indicating chronic water stress. The study employs geospatial techniques to map these SPI trends, 
enabling a visual representation of drought hotspots and facilitating targeted mitigation strategies. The integration 
of SPI with geospatial tools allows for a granular assessment of drought risk, identifying vulnerable areas such as 
Madadakere (moderate dryness, SPI: -1.11) and Holalkere (moderate wetness, SPI: 0.32 in 2015), which require 
differentiated approaches to water management. The temporal analysis reveals that 2019 was particularly critical, 
with multiple stations including Challakere, Bahadurghatta, and Chitradurga recording very low rainfall and 
correspondingly low SPI values, exacerbating agricultural and ecological stress. Conversely, 2011 and 2015 saw 
pockets of extreme wetness, such as in Horakedevapura HD (SPI: 0.83 in 2011) and Chickjajur (SPI: 1.11 in 2015), 
which, while beneficial for groundwater recharge, also pose challenges like flooding and soil erosion. The SPI 
classification system used in the study (Table 2) provides a standardized framework for interpreting these 
fluctuations, with "moderate dry" (-1.26 to -0.35) and "normal" (-0.34 to -0.11) ranges helping distinguish between 
manageable deficits and critical emergencies.  
 

 

Fig.3. Standardized precipitation index of the study area 

 The findings emphasize the need for adaptive water governance, as regions like Davanagere TP exhibited 
resilience with SPI values oscillating near normal ranges (e.g., 0.48 in 2020), while others like Hiregutanur suffered 
recurrent dryness (SPI: -0.45 in 2019). The study’s methodology combining SPI calculations with geospatial 
mapping enhances the precision of drought monitoring, enabling early warning systems and policy interventions. 
For example, the identification of "extremely dry" zones in 2019 could prompt the implementation of contingency 
crop plans or irrigation subsidies, while "extremely wet" areas might prioritize flood control infrastructure. The 
research also sheds light on the broader climatic trends affecting Chitradurga Taluk, suggesting links to phenomena 
like El Niño or anthropogenic climate change, which amplify rainfall variability. 

3. Normalized Difference Vegetation Index (NDVI) 
 The presents study of agricultural drought conditions in the region using the NDVI, a key remote sensing 
tool that quantifies vegetation health by measuring the difference between near-infrared (which vegetation strongly 
reflects) and red light (which vegetation absorbs). The study leverages Landsat-7 imagery from 2000 and Landsat-8 
data from 2015 and 2020 to generate NDVI maps, which reveal significant temporal changes in vegetation cover, 
serving as a proxy for agricultural drought severity. The NDVI values, ranging from -0.1 (indicating barren or non-
vegetated areas) to 1 (representing dense, healthy vegetation), with an average maximum of 0.41, reflect moderate 
vegetation health in the region, while the minimum value of -0.3 highlights areas of severe vegetation stress, likely 
due to water scarcity or poor soil conditions. 
 The comparative analysis of the three years demonstrates a notable improvement in vegetation cover from 
2000 to 2015 and 2020, suggesting either climatic variability, such as increased rainfall in later years, or the success 
of local agricultural interventions like irrigation projects or afforestation efforts. For instance, the 2000 NDVI maps 
show significantly lower vegetation levels, possibly linked to historical drought events or land degradation, whereas 
the 2015 and 2020 maps indicate higher NDVI values, signaling recovery or improved land management practices. 
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The geospatial visualization of these trends are shown in the figure 4 provides a clear, spatially explicit 
representation of vegetation health, enabling the identification of drought-prone areas, such as those with 
persistently low NDVI values, and regions of resilience, where vegetation has thrived despite climatic challenges 
(Praba et al., 2009). This spatial granularity is crucial for targeted policy interventions, as it allows authorities to 
prioritize resources for areas with chronic vegetation stress, such as implementing water conservation measures or 
promoting drought-resistant crop varieties (Potop et al., 2012).   
 

 

Fig. 4. NDVI trends in 2000, 2015, 2020 and mean 

4. Vegetation Condition Index (VCI)  
The detailed assessment of agricultural drought conditions using the VCI, a satellite-derived metric that 

evaluates vegetation health by comparing current vegetation vigor to long-term historical norms, thereby isolating 
the impact of weather-related stress from other factors like soil type or land management (Farooq et al., 2009). The 
study focuses on the Kharif (monsoon) seasons of 2000, 2015, and 2020, revealing stark contrasts in vegetation 
health across these years. In 2000, a large area suffered severe drought, with VCI values between 1 and 25, showing 
that the vegetation was extremely stressed by the lack of rainfall or a long dry spell, which probably caused severe 
crop failure and the decrease in agricultural yield. In 2015 however, the pains of drought in the region was far 
lessened as evidenced by the VCI, it was having normal vegetation health with large areas of the taluk being 
impacted suggesting better monsoon or a proper prevention or withdrawal from drought by means of irrigation or 
changes in crops. 2020 displayed more variability with average VCI values varying between 71.28 and 143.43, 
signifying overall healthy vegetation with areas of moderate stress that could be attributed to localized rainfall 
deficits or soil moisture conditions. The geospatial representation of these trends, which is presented in the figure 5, 
reveals the spatially explicit nature of vegetation stress and allows for the identification of hotspots and resilient 
zones, which is essential to the calibration of targeted agricultural interventions. For example, areas with 
consistently low VCI values, such as what was recorded in 2000, could benefit from improved irrigation facilities or 
introduction of drought-tolerant varieties of crops, whereas those with high VCI values, such as what was 
experienced in 2015, could also act as a model for good farming practices. 

  

 

Fig. 5. VCI trends in 2000, 2015, 2020 and mean 
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5. Normalized Difference Water Index (NDWI)  
 The comprehensive study of hydrological drought assessment using the NDWI, a satellite-derived metric 
that evaluates water availability by analyzing the reflectance of green  
 

 

Fig.6. NDWI trends in 2000, 2015, 2020 and mean 
and near-infrared light to distinguish water bodies from dry land. The study examines NDWI values across three 
key years—2000, 2015, and 2020—revealing significant fluctuations in water availability, with 2015 recording the 
highest NDWI value of 0.39, indicating optimal water conditions, while 2000 exhibited severe drought with a value 
of -0.41, reflecting acute water scarcity. These values, which range from -0.35 (indicating drought) to 0.3 (signifying 
no drought), highlight the hydrological variability in the region, with 2000 marked as the driest year and 2015 as 
the wettest, while 2020 showed intermediate conditions, suggesting a decline in water availability compared to 
2015. Looking at the NDWI maps (figure 6), one can easily see the spatially explicit information on water stress. 
Especially for droughts, where you have potential in identifying areas that are drought-prone and those that have 
stable water (Aadhar and Mishra, 2023; Shah and Mishra, 2021). Visualization of these trends in geospatial domain 
also helps in identifying the hotspots like areas with continuous NDWI values in the negative that can be targeted 
with interventions such as storing the water through groundwater recharge or by improving the irrigation 
infrastructure. The present study also demonstrates the applicability of remote sensing for large-scale hydrological 
monitoring, as NDWI is a cost-effective and time-saving substitute for ground-based surveys, particularly in data-
poor regions. Thus, this NDWI analysis is found to be a powerful base to have a scientific backing to drought risk 
assessment in Chitradurga Taluk which shows the potential of the geospatial technologies as tools in solving the 
water scarcity issues. The study means of integrating NDWI and geomatics provides a replicable template for other 
drought-prone areas, and gives us a timely reminder of the imperative for integrated, data-driven interventions to 
the accelerating dangers of climate and water stress. 

6. Land Surface Temperature (LST)  
 This study employs integrated geospatial techniques to assess drought risk in Chitradurga Taluk, 
Karnataka, India, using Landsat derived LST data (2000–2020) alongside drought indices (VCI, NDVI, NDWI, 
SPI).  

 

 

Fig.7. LST trends in 2000, 2015, 2020 and mean 
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 Results reveal significant LST variability (table 4), with 2000 exhibiting extreme temperatures (max: 47°C, 
min: 20°C), indicating severe moisture stress, while 2015 and 2020 showed moderated thermal conditions (max: 40–
41°C, min: 23°C), suggesting reduced drought intensity. High LST is related to lower vegetation health (NDVI) and 
water stress (NDWI), also intensifying the agricultural drought. Spatiotemporal analysis locates hotspots of 
thermal anomalies, where elevated LSTs coincide with ecological stress. Localized features (such as vegetation 
recovering or monsoon variability) might explain LST decreases despite GW. The research highlights the potential 
of LST data for drought monitoring, supporting its incorporation in early warning application. Constraints, e.g. 
sensor resolution, require more sophisticated methods. Results highlight the multi-sectoral drought management, 
use of both heat and hydrological based indices for climate adaptation in semi-arid areas. The model is transferable 
to similar climatic zones. 

Table 4. Land surface temperature trends in the study area 
 

  

LST (years) Mini temp (℃) Maxi temp (℃) 

2000 20 47 

2015 23 41 

2020 23 40 

Indices Comparative Analysis  
The comprehensive analysis of drought risk in Chitradurga Taluk, Karnataka, India, integrating Rainfall, 

SPI, NDVI, NDWI, VCI and LST data through geospatial techniques, reveals a multifaceted understanding of 
drought dynamics across temporal and spatial scales. The rainfall analysis (2000–2020) highlights significant 
variability (figure 2), with some stations like Bahadhurghatta recording extreme fluctuations (e.g., 270.96 mm in 
2010 to zero in subsequent years), while others like Holalkere and Horakedevapura HD maintained relatively stable 
averages (778.44 mm and 824.16 mm, respectively), emphasizing the region's erratic precipitation patterns (Sadiq et 
al., 2020) . The SPI analysis (figure 3) quantifies these rainfall anomalies, identifying severe droughts in 2019 (SPI: -
2.16 in Chitradurga RLY) and extreme wet conditions in 2011 (SPI: 2.00 in Sirigere), demonstrating the utility of 
SPI in classifying drought intensity and linking meteorological deficits to agricultural and hydrological impacts. 
Complementing this, the NDVI (figure 4) analysis (2000, 2015, 2020) captures vegetation health, with 2000 showing 
stressed conditions (NDVI: -0.3 to 0.41) due to low rainfall and high LST, while 2015 and 2020 exhibited recovery 
(NDVI up to 0.41), aligning with improved SPI and rainfall trends. The NDWI maps (figure 5) further 
contextualize hydrological drought, with 2000 marked by severe water scarcity (NDWI: -0.41) and 2015 by optimal 
water availability (NDWI: 0.39), directly influencing NDVI and VCI outcomes. These results are supported by VCI 
(figure 6) data where, during 2000 (severe drought; VCI: 1–25), vegetation’s health was at its worst because of a 
combined effect of drying (SPI) and extremely high heat (47°C), whereas during 2015 (normal VCI: 71.28–143.43), 
the vegetation recovered, potentially because of better water retention (NDWI) and relatively moderate heat (LST: 
41°C). The LST analysis (figure 7) demonstrates that drought was largely conditioned by thermal stress, 2000 
maximum LST peak (47°C) tendency toward intensification of moisture loss and vegetation stress, while 2015 and 
2020’s lower 40–41°C maxima favor improved ecological conditions. 

Geospatial composite of these indices combined with LST demonstrates the relationship between 
meteorological (SPI), eco-ecological (NDVI/VCI) and hydrological (NDWI) anomalies, with LST playing a role as a 
thermal stress inducer. For example, the 2000 drought under the high LST and low NDWI was accumulated 
suffering (low NDVI/VCI), while the moderate LST and the high NDWI in 2015 enabled recovery. This synergy is 
observed in the maps (e.g., NDVI, NDWI, LST spatial distributions in Figure 8) and allow for joint activities (e.g., 
focus irrigation in low NDWI/NDVI areas or reforestation in the area with high LST). Through the combination of 
these indices, the study offers a universally applicable framework for comprehensive drought management, 
highlighting that an effective way of alleviating drought is attending precipitation, temperature, vegetation, water 
supply together. Such integrations are critical for the agrarian economy of Chitradurga Taluk, where droughts 
jeopardize livelihoods, food security, and environmental sustainability, and provide a template for other semi-arid 
regions around the world under threat from climate change. Overlay of Rainfall, SPI, NDVI, NDWI, VCI, and LST 
through geospatial approach not only provide high-resolution mapping of drought risk, but also uncover the 
intricate processes behind such patterns, and raise deliberate responses grounded in science to protect people and 
ecosystems at risk at Chitradurga Taluk and beyond. 

Summary and Conclusions 
 A comprehensive mapping of drought risk has been obtained through the integrated assessment of multi-
variants such as Rainfall, SPI, NDVI, NDWI, VCI, and LST at (Chitradurga Taluk) in Karnataka, India has been 
achieved, using GIS, for better perception of drought processes all over time and space. We notice the rainfall 
variation over the period 2000–2020 is quite varied; at some of the stations such as Bahadhurghatta, (270.96 mm in 
2010, nil in the next year), and elsewhere the variation is not much; for example, at Holalkere station the average 
rainfall was 778.44 mm and is relatively static, which gives us an insight to the uncertainty of the climate in this 
region. The SPI analysis measure meteorological droughts competing occurrences of severe drought in 2019 (SPI: 

− 2.16) and wet extreme in 2011 (SPI: 2.00), droughts with acute precipitation deficit that in turn have directly 
translated in irrigation requirements. Figure 6 shows the NDVI and VCI trends in vegetation condition, with year 

2000 characterized by severe stress (NDVI: −0.3; VCI: 1–25) and low rainfall and high temperature (LST in 47°C), 
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whereas recovery (2005–2010), from better rainfall and moderated temperature (LST in 40–41°C) to the good 
condition (NDVI in 0.41; VCI in 71–143) for years 2015–2020 can be indicated. NDWI maps provide more context 
on hydrological drought: water stress (NDWI -0.41) in 2000 versus surplus in 2015 (NDWI 0.39) driving 
vegetation resilience. 
 The synergy of these indices reflects how meteorological (SPI), agricultural (NDVI/VCI), hydrological 
(NDWI) and thermal (LST) variables influence the evolution of drought events positively or negatively. For 
example, combined high 2000 LST, low NDWI and rainfall deficits induced ecological stress, whereas favorable 
conditions in 2015 were conducive to recovery. Geospatial visualization identifies risk areas, to which targeted 
responses like irrigation in low-NDWI spots or heat-resistant varieties could be implemented. The research 
highlights the importance of multi- index drought monitoring to consider these complexities; because the use of 
single indicators (such as SPI) fails to account for important factors such as temperature or vegetation response. 
This holistic approach built on data can not only contribute to making Chitradurga Taluk more resilient to drought, 
but also be replicated in other semi-arid regions around the world as an example of a model that provides solutions 
for mitigating climate risks and securing livelihoods in face of growng climatic variability. 
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